
INTRODUCTION

There are many ways to structure a fixed income portfolio even when a desired duration is required 

(e.g., matching the duration of a benchmark or a liability). One can invest in bonds with different 

maturities across the yield curve and hold them until maturity; then, as bonds mature, the proceeds 

are invested in new bonds so that the average duration is kept at the desired level. Alternatively, 

one can hold bonds within certain maturity segments and rebalance to maintain the desired 

duration. While these approaches may be managed to meet the same duration constraints, their 

expected returns can be quite different because of the current shape and the expected movement 

(if any) of the yield curve. 

In this article, we present a theoretical framework for how to pursue higher expected returns 

of a fixed income portfolio subject to duration constraints. That framework is then tested using 

a historical time series of US Treasuries. The results suggest that, by using the information in current 

yield curves, we can improve expected return in a systematic and reliable way, while still maintaining 

the desired duration. 
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THEORETICAL FRAMEWORK

The building block of this analysis is the expected return on a single zero coupon bond with duration 

1 
 

Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

over a holding period of 

1 
 

Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

, denoted as 

1 
 

Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

. The expected return of a portfolio is then the 

weighted average of the expected returns of the eligible bonds, with durations between zero and a 

maximum duration, selected for the portfolio: 

1 
 

Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

, where 

1 
 

Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

is the weight of the bond 

with duration 

1 
 

Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

. The goal is to maximize this expected return while maintaining the duration of the 

portfolio at D, which can be formalized as the following constrained optimization problem:

0

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

.

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
� − 1 

r

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0 ≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0 ≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

The question then becomes, can we say something about the expected return 

1 
 

Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

 using 

information currently available at time zero? 

Define 

2 
 

The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

 as the yield-to-maturity at time 
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Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

 for a zero coupon bond with duration 
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. The current 

price of the zero coupon bond with duration n and yield to maturity 

2 
 

The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

 is 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

. Over 

a period of time 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

, the bond duration will become 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

 and its new yield to maturity 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

. 

Its price will be 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

. The expected return can be written as

2 
 

The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

To gain more intuition we can decompose the expected return into three parts by multiplying and 

dividing it by 

2 
 

The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

 and 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

.

(1)	A component related to the bond’s current yield  
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

 . 

(2)	A component related to the bond’s expected capital appreciation or depreciation over the 

next Δt based on the current (at time zero) term structure.  Over the next Δt, an n-year 

bond yielding 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

will have 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). Its price will be  𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝐸𝐸𝐸𝐸0 �

𝑃𝑃𝑃𝑃∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃𝑃𝑃0
(𝑛𝑛𝑛𝑛) − 1� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) − 1� 

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)

. 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� =  𝐸𝐸𝐸𝐸0 �

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) ⋅

𝑒𝑒𝑒𝑒− (𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛) �����

(1)
𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)) ���������������

(2)
𝐸𝐸𝐸𝐸0 �𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) (𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))���������������

(3)
�   − 1   

(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
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0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� using information 

currently available at time zero?  

Define 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) as the yield-to-maturity at time 𝑡𝑡𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛𝑛𝑛. The current price of the zero 

coupon bond with duration 𝑛𝑛𝑛𝑛 and yield to maturity 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)  is 𝑃𝑃𝑃𝑃0

(𝑛𝑛𝑛𝑛) =  𝑒𝑒𝑒𝑒− 𝑛𝑛𝑛𝑛 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

. Over a period of time ∆𝑡𝑡𝑡𝑡, the bond duration 

will become 𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
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(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

. The expected return 

can be written as 

𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
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To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 
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 and 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)
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(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  

Exhibit 1 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 

Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 
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 due to movements 

along the current yield curve. 

(3)	A component related to changes in the yield curve itself in the next Δt. 
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The question then becomes, can we say something about the expected return 𝐸𝐸0 (𝑅𝑅∆𝑡𝑡
(𝑛𝑛𝑛) using information 

currently available at time zero?  

Define 𝑦𝑦𝑡𝑡
(𝑛𝑛𝑛 as the yield-to-maturity at time 𝑡𝑡 for a zero coupon bond with duration 𝑛𝑛. The current price of the zero

coupon bond with duration 𝑛𝑛 and yield to maturity 𝑦𝑦0
(𝑛𝑛𝑛  is 𝑃𝑃0

(𝑛𝑛𝑛 =  𝑒𝑒− 𝑛𝑛𝑛𝑛𝑛0(𝑛𝑛𝑛. Over a period of time ∆𝑡𝑡, the bond duration 

will become 𝑛𝑛 𝑛 𝑛𝑛𝑛 and its new yield to maturity 𝑦𝑦∆𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛. Its price will be  𝑃𝑃𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑒𝑒− (𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡∆𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛

. The expected return

can be written as 

𝐸𝐸0 (𝑅𝑅∆𝑡𝑡
(𝑛𝑛𝑛) = 𝐸𝐸0 (

𝑃𝑃𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑃𝑃0
(𝑛𝑛𝑛 − 1) =  𝐸𝐸0 (

𝑒𝑒− (𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡∆𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑒𝑒− 𝑛𝑛𝑛𝑛𝑛0
(𝑛𝑛𝑛 − 1)

To gain more intuition we can decompose the expected return into three parts by multiplying and dividing it by 

𝑒𝑒−(𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡0(𝑛𝑛𝑛 and 𝑒𝑒−(𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡0(𝑛𝑛𝑛𝑡𝑡𝑡. 

𝐸𝐸0 (𝑅𝑅∆𝑡𝑡
(𝑛𝑛)) =  𝐸𝐸0 (

𝑒𝑒− (𝑛𝑛𝑛𝑡𝑡)𝑦𝑦0(𝑛𝑛)

𝑒𝑒− 𝑛𝑛𝑛𝑛𝑛0(𝑛𝑛)
⋅ 𝑒𝑒
− (𝑛𝑛𝑛𝑡𝑡)𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒− (𝑛𝑛𝑛𝑡𝑡)𝑦𝑦0(𝑛𝑛)
⋅ 𝑒𝑒
− (𝑛𝑛𝑛𝑡𝑡)𝑦𝑦∆𝑡𝑡

(𝑛𝑛𝑛𝑛𝑛𝑛)

𝑒𝑒−(𝑛𝑛𝑛𝑡𝑡)𝑦𝑦0(𝑛𝑛𝑛𝑛𝑛𝑛)
− 1)

=  𝑒𝑒𝑡𝑡𝑡𝑡𝑡0(𝑛𝑛𝑛⏟    
(1)

𝑒𝑒−(𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡0(𝑛𝑛𝑛𝑡𝑡𝑡−𝑦𝑦0(𝑛𝑛𝑛)⏟              
(2)

𝐸𝐸0 (𝑒𝑒−(𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑡𝑡𝑡−𝑦𝑦0

(𝑛𝑛𝑛𝑡𝑡𝑡)⏟              
(3)

) − 1  

(1) Returns from holding the security yielding 𝑦𝑦0
(𝑛𝑛𝑛

 for the next t. 

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛 𝑛 𝑡𝑡 to maturity yields 𝑦𝑦0
(𝑛𝑛𝑛𝑡𝑡𝑡 instead of 𝑦𝑦0

(𝑛𝑛𝑛
.

(3) Capital appreciation returns due to changes in the term structure in the next t. 

Exhibit 1 shows a graphical representation of this decomposition. 

Exhibit 1 

∑ 𝑤𝑤𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸0 (𝑅𝑅(∆
𝑛𝑛
𝑡𝑡
)) for all 𝑤𝑤𝑛𝑛, 0≤ 𝑛𝑛 ≤ max 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 ∑ 𝑤𝑤𝑛𝑛 ⋅ 𝑛𝑛 = 𝐷𝐷 

0 ≤ 𝑤𝑤𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑛𝑛 
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Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 
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1.	 For more information on the expectation hypothesis and the empirical tests, see, for example, Dai (2015).

Exhibit 1 shows a graphical representation of this decomposition. 

Terms (1) and (2)—current yield and expected capital appreciation—are observable at time zero; they 

are based on the current yield curve and contain information about differences in expected returns 

among bonds with different maturities. Term (3) is related to the changes in the yield curve in the 

future (over the next 
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 period) and therefore is not directly observable at time zero. Thus, term (3) 

cannot be used to identify differences in expected returns unless an observable and reliable proxy 

exists. If such a proxy does not exist, we must determine if the noise introduced by future changes 
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Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 
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holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 
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Taking the logarithm of the expected return equation, the log return in ∆𝑡𝑡𝑡𝑡 on a bond with duration 𝑛𝑛𝑛𝑛 can be 

written as 

𝐷𝐷𝐷𝐷∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) = ∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))

Using the forward rate, 𝑓𝑓𝑓𝑓0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) , the equation above can be expressed as

𝐷𝐷𝐷𝐷∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) = ∆𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))

The forward rate represents the incremental yield that a bond with 𝑛𝑛𝑛𝑛 periods to maturity will have relative to a 

bond with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 periods to maturity. In the absence of yield changes in the next ∆t, it also represents the bond return 

over that period of time. As shown in Fama (1976), forward rates can be written as a combination of the expected changes 

in future yields and the expected term premiums—that is, forward rates have to tell us something about one or the other.  

We see this by rearranging the equation above and taking expectations on both sides. 

Using US Treasury zero coupon yield curve data from 1964 to 2015, we run the following regressions to examine 

the informational content in forward rates and to determine how much information about expected term premiums and 

expected changes in future yields is contained in forward rates. The first regression forecasts one-year returns on n-year 

bonds, while the second regression forecasts (n-1)-year rates one year from now. 

Exhibit 2 
Information in the forward rates about term premiums in the next year 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1
(𝑛𝑛𝑛𝑛) − 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1

(1) = α + β�𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛−1→𝑛𝑛𝑛𝑛) −  𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡

(1)�+ 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡+1
(𝑛𝑛𝑛𝑛)

n slope t-stat adj. R2 
2 0.79 2.92 0.09 
3 0.98 2.97 0.09 
4 1.17 3.20 0.11 
5 1.34 3.46 0.12 

Information in the forward rates about yield changes in the next year 
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5 -0.08 -0.87 0.01 
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(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 
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The question then becomes, can we say something about the expected return 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
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𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡)𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 1�

=  𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0
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(1) Returns from holding the security yielding 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛)

 for the next ∆t.  

(2) Roll down yield—capital appreciation returns due to current (at time zero) term structure. At time zero, a bond 

with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 to maturity yields 𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) instead of 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)
. 

(3) Capital appreciation returns due to changes in the term structure in the next ∆t.  

Exhibit 1 shows a graphical representation of this decomposition.  
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(𝑛𝑛𝑛𝑛)� for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 
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0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

periods to maturity. In the absence of yield changes in the next 
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Pursuing Higher Expected Returns with Duration Constraints 

Wei Dai, Joseph Kolerich, and Douglas Longo 

 

Introduction 

There are many ways to structure a fixed income portfolio even when a desired duration is required (e.g., matching 

the duration of a benchmark or a liability). One can invest in bonds with different maturities across the yield curve and hold 

them until maturity; then, as bonds mature, the proceeds are invested in new bonds so that the average duration is kept at 

the desired level. Alternatively, one can hold bonds within certain maturity segments and rebalance to maintain the 

desired duration. While these approaches may be managed to meet the same duration constraints, their expected returns 

can be quite different because of the current shape and the expected movement (if any) of the yield curve.  

In this article, we present a theoretical framework for how to pursue higher expected returns of a fixed income 

portfolio subject to duration constraints. That framework is then tested using a historical time series of US Treasuries. 

Finally, we use theory and empirical evidence to illustrate how we believe the structure of the DFA Intermediate 

Government Fixed Income Portfolio (the “Portfolio”), launched back in 1990, has helped the Portfolio beat its benchmark 

since inception.  

 

Theoretical Framework 

The building block of this analysis is the expected return on a single zero coupon bond with duration 𝑛𝑛𝑛𝑛 over a 

holding period of ∆𝑡𝑡𝑡𝑡, denoted as 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�. The expected return of a portfolio is then the weighted average of the 

expected returns of the eligible bonds, with durations between zero and a maximum duration, selected for the 

portfolio: ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)�, where  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 is the weight of the bond with duration 𝑛𝑛𝑛𝑛. The goal is to maximize this expected 

return while maintaining the duration of the portfolio at 𝐷𝐷𝐷𝐷, which can be formalized as the following constrained 

optimization problem: 

, 

it also represents the bond return over that period of time. As shown in Fama (1976), forward rates 

can be written as a combination of the expected changes in future yields and the expected term 

premiums—that is, forward rates have to tell us something about one or the other. We see this by 

rearranging the equation above and taking expectations on both sides.

Using US Treasury zero coupon yield curve data from 1964 to 2016, we run the following regressions 

to examine the informational content in forward rates and to determine how much information 

about expected term premiums and expected changes in future yields is contained in forward rates. 

The first regression forecasts one-year returns on n-year bonds, while the second regression forecasts 

(n-1)-year rates one year from now.

As shown in Exhibit 2, forward rates contain statistically reliable information about expected term 

premiums when the forecast horizon is one year. Forward rates tell us very little, however, about 

changes in yields.2 In addition, existing forecasting models of yield curve changes have not shown the 

ability to provide persistent a-posteriori forecasts that are superior to current yields. Current yield 

curves contain information about future expected changes, and only randomly distributed actual 

changes with zero mean are observed. In fact, assuming zero expected changes in yield curves seems 

to perform better than previously proposed models.3 

2.	 The results here are consistent with the findings in Fama (1984), Fama and Bliss (1987), and subsequent studies.

3.	 See, for example, Fama (1976) and Duffee (2002).
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Given this empirical evidence, we believe a reasonable place to start for government bonds is to use 

the observable components of expected returns—current yield and expected capital appreciation—

when forming portfolios. The optimization problem stated above can be rewritten as

ILLUSTRATIVE EXAMPLE: US TREASURY ZERO COUPON YIELD CURVE

Under the developed framework, what does a typical shape of the US Treasury zero coupon yield 

curve imply about the expected returns at different points across the curve and, consequently, which 

segments to focus on for higher expected returns? 

As an illustration, let’s look at a hypothetical spot yield curve plotted in blue in Exhibit 3. Based on 

the framework developed in the previous section, we can calculate the expected return using the 

information in the current yield curve: 
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superior to current yields. Current yield curves contain information about future expected changes, and only randomly 

distributed actual changes with zero mean are observed. In fact, assuming zero expected changes in yield curves seems to 
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Given this empirical evidence, we believe a reasonable place to start for government bonds is to use the 

observable components of expected returns—current yield and roll down yield returns—when forming portfolios. The 

optimization problem stated above can be rewritten as  

 

Illustrative Example: US Treasury Zero Coupon Yield Curve 

Under the developed framework, what does a typical shape of the US Treasury zero coupon yield curve imply 

about the expected returns at different points across the curve and, consequently, which segments to focus on for higher 

expected returns?  

As an illustration, let’s look at the spot yield curve at the end of 2015 plotted in blue in Exhibit 3. Based on the 

framework developed in the previous section, we can calculate the expected return using the information in the current 

yield curve: 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
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forecasting models of yield curve changes have not shown the ability to provide persistent a-posteriori forecasts that are 

superior to current yields. Current yield curves contain information about future expected changes, and only randomly 

distributed actual changes with zero mean are observed. In fact, assuming zero expected changes in yield curves seems to 

perform better than previously proposed models.2F

3 

Given this empirical evidence, we believe a reasonable place to start for government bonds is to use the 

observable components of expected returns—current yield and roll down yield returns—when forming portfolios. The 

optimization problem stated above can be rewritten as  

 

Illustrative Example: US Treasury Zero Coupon Yield Curve 

Under the developed framework, what does a typical shape of the US Treasury zero coupon yield curve imply 

about the expected returns at different points across the curve and, consequently, which segments to focus on for higher 

expected returns?  

As an illustration, let’s look at the spot yield curve at the end of 2015 plotted in blue in Exhibit 3. Based on the 

framework developed in the previous section, we can calculate the expected return using the information in the current 
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Exhibit 2: Informational Content in Forward Rates

Information in the Forward Rates about Term Premiums in the Next Year

4 

Taking the logarithm of the expected return equation, the log return in ∆𝑡𝑡𝑡𝑡 on a bond with duration 𝑛𝑛𝑛𝑛 can be 

written as 

𝐷𝐷𝐷𝐷∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) = ∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))

Using the forward rate, 𝑓𝑓𝑓𝑓0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) , the equation above can be expressed as

𝐷𝐷𝐷𝐷∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) = ∆𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))

The forward rate represents the incremental yield that a bond with 𝑛𝑛𝑛𝑛 periods to maturity will have relative to a 

bond with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 periods to maturity. In the absence of yield changes in the next ∆t, it also represents the bond return 

over that period of time. As shown in Fama (1976), forward rates can be written as a combination of the expected changes 

in future yields and the expected term premiums—that is, forward rates have to tell us something about one or the other.  

We see this by rearranging the equation above and taking expectations on both sides. 

Using US Treasury zero coupon yield curve data from 1964 to 2015, we run the following regressions to examine 

the informational content in forward rates and to determine how much information about expected term premiums and 

expected changes in future yields is contained in forward rates. The first regression forecasts one-year returns on n-year 

bonds, while the second regression forecasts (n-1)-year rates one year from now. 

Exhibit 2 
Information in the forward rates about term premiums in the next year 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1
(𝑛𝑛𝑛𝑛) − 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1

(1) = α + β�𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛−1→𝑛𝑛𝑛𝑛) −  𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡

(1)�+ 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡+1
(𝑛𝑛𝑛𝑛)

n slope t-stat adj. R2 
2 0.79 2.92 0.09 
3 0.98 2.97 0.09 
4 1.17 3.20 0.11 
5 1.34 3.46 0.12 

Information in the forward rates about yield changes in the next year 
𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡+1

(𝑛𝑛𝑛𝑛−1) - 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛−1)= α + β �𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛−1→𝑛𝑛𝑛𝑛) −  𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(1)�+ 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡+1

(𝑛𝑛𝑛𝑛)

n slope t-stat adj. R2 
2 0.21 0.77 0.00 
3 0.01 0.05 0.00 
4 -0.06 -0.45 0.00 
5 -0.08 -0.87 0.01 

n slope t-stat adj. R2

2 0.79 2.91 0.09

3 0.98 2.97 0.09

4 1.16 3.21 0.11

5 1.34 3.48 0.12

Information in the Forward Rates about Yield Changes in the Next Year

4 

Taking the logarithm of the expected return equation, the log return in ∆𝑡𝑡𝑡𝑡 on a bond with duration 𝑛𝑛𝑛𝑛 can be 

written as 

𝐷𝐷𝐷𝐷∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) = ∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))

Using the forward rate, 𝑓𝑓𝑓𝑓0
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) , the equation above can be expressed as

𝐷𝐷𝐷𝐷∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛) = ∆𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − (𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡) − 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡))

The forward rate represents the incremental yield that a bond with 𝑛𝑛𝑛𝑛 periods to maturity will have relative to a 

bond with 𝑛𝑛𝑛𝑛 𝑛 ∆𝑡𝑡𝑡𝑡 periods to maturity. In the absence of yield changes in the next ∆t, it also represents the bond return 

over that period of time. As shown in Fama (1976), forward rates can be written as a combination of the expected changes 

in future yields and the expected term premiums—that is, forward rates have to tell us something about one or the other.  

We see this by rearranging the equation above and taking expectations on both sides. 

Using US Treasury zero coupon yield curve data from 1964 to 2015, we run the following regressions to examine 

the informational content in forward rates and to determine how much information about expected term premiums and 

expected changes in future yields is contained in forward rates. The first regression forecasts one-year returns on n-year 

bonds, while the second regression forecasts (n-1)-year rates one year from now. 

Exhibit 2 
Information in the forward rates about term premiums in the next year 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1
(𝑛𝑛𝑛𝑛) − 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1

(1) = α + β�𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛−1→𝑛𝑛𝑛𝑛) −  𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡

(1)�+ 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡+1
(𝑛𝑛𝑛𝑛)

n slope t-stat adj. R2 
2 0.79 2.92 0.09 
3 0.98 2.97 0.09 
4 1.17 3.20 0.11 
5 1.34 3.46 0.12 

Information in the forward rates about yield changes in the next year 
𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡+1

(𝑛𝑛𝑛𝑛−1) - 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛−1)= α + β �𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡

(𝑛𝑛𝑛𝑛−1→𝑛𝑛𝑛𝑛) −  𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡
(1)�+ 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡+1

(𝑛𝑛𝑛𝑛)

n slope t-stat adj. R2 
2 0.21 0.77 0.00 
3 0.01 0.05 0.00 
4 -0.06 -0.45 0.00 
5 -0.08 -0.87 0.01 

n slope t-stat adj. R2

2 0.21 0.78 0.01

3 0.01 0.06 0.00

4 −0.05 −0.45 0.00

5 −0.08 −0.88 0.01

Data source: Federal Reserve Board, www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.

0 ( 0 0

   

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒
∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛) 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛−∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛−∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛))  for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0 ≤ 𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 
Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0 ≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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The illustrative example suggests that for the yield curve shape as shown, the expected returns at 

the short end of the yield curve tend to be lower. Suppose the desired duration is eight years. All 

else equal, we may want to underweight this maturity segment at the short end in order to increase 

expected return. We believe the implication is that we should also underweight the long end and 

focus on the middle part of the curve if we want to keep the duration at eight years. 

Exhibit 4 demonstrates that idea with a simple numerical example. While different combinations 

of points on the curve may have the same average duration, their expected returns can be different. 

Instead of having exposure to both the short and long ends of the yield curve, our numerical example 

indicates that focusing on the middle segment of the hypothetical yield curve may lead to higher 

expected returns.

Exhibit 3: Expected Return for Hypothetical Yield Curve

For illustrative purposes only. Past performance is no guarantee of future results.

0
0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5 10 15 20 25

Duration

 Yield
 Expected Return

Exhibit 4: Expected Returns of Different Allocations with Same Duration 

Allocation Duration Expected Return

50% 1Y + 50% 15Y 8Y 2.13%

50% 3Y + 50% 13Y 8Y 2.69%

50% 5Y + 50% 11Y 8Y 3.05%

Expected returns are based on current yield and expected capital appreciation, i.e., 

5 
 

As shown in Exhibit 2, forward rates contain statistically reliable information about expected term premiums when 

the forecast horizon is one year. Forward rates tell us very little, however, about changes in yields.1F

2 In addition, existing 

forecasting models of yield curve changes have not shown the ability to provide persistent a-posteriori forecasts that are 

superior to current yields. Current yield curves contain information about future expected changes, and only randomly 

distributed actual changes with zero mean are observed. In fact, assuming zero expected changes in yield curves seems to 

perform better than previously proposed models.2F

3 

Given this empirical evidence, we believe a reasonable place to start for government bonds is to use the 

observable components of expected returns—current yield and roll down yield returns—when forming portfolios. The 

optimization problem stated above can be rewritten as  

 

Illustrative Example: US Treasury Zero Coupon Yield Curve 

Under the developed framework, what does a typical shape of the US Treasury zero coupon yield curve imply 

about the expected returns at different points across the curve and, consequently, which segments to focus on for higher 

expected returns?  

As an illustration, let’s look at the spot yield curve at the end of 2015 plotted in blue in Exhibit 3. Based on the 

framework developed in the previous section, we can calculate the expected return using the information in the current 

yield curve: 𝐸𝐸𝐸𝐸0 �𝑅𝑅𝑅𝑅∆𝑡𝑡𝑡𝑡
(𝑛𝑛𝑛𝑛)� = 𝑒𝑒𝑒𝑒∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛) 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛−∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛−∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛)) − 1 . The resulting expected return curve for ∆𝑡𝑡𝑡𝑡 = 1𝑌𝑌𝑌𝑌  is plotted in 

green.  

Exhibit 3 
 

                                                           
2. The results here are consistent with the findings in Fama (1984), Fama and Bliss (1987) and subsequent studies. 
3. See, for example, Fama (1976) and Duffee (2002). 

∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 = 1 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒 ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒
∆𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛) 𝑒𝑒𝑒𝑒−(𝑛𝑛𝑛𝑛−∆𝑡𝑡𝑡𝑡)(𝑦𝑦𝑦𝑦0
(𝑛𝑛𝑛𝑛−∆𝑡𝑡𝑡𝑡)−𝑦𝑦𝑦𝑦0

(𝑛𝑛𝑛𝑛))  for all 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛, 0≤𝑛𝑛𝑛𝑛 ≤ max𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 
Subject to:         ∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ⋅ 𝑛𝑛𝑛𝑛 = 𝐷𝐷𝐷𝐷 

0≤ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 ≤ 1 for all  𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 

 
Past performance is no guarantee of future results. There is no guarantee that any product or strategy offered by Dimensional 
will achieve the returns shown. Please see disclosure on last page for important information regarding forward-looking statements.
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To empirically test this implication, we use the US Treasury zero coupon yield data from 1982 to 

20164 and examine the performance of different constant duration portfolios that invest in:

•	 The section from 1 year to 15 years

•	 The short end from 1 year to 4 years and the long end from 12 years to 15 years

•	 The middle segment from 5 years to 11 years

The portfolios rebalance annually in December, and the maturities are equally weighted to achieve 

duration of eight years at rebalancing time. 

As shown in Exhibit 5, investing only in the short and long ends of the typical US Treasury zero 

coupon yield curve has generated an annualized return of 9.00%, which is lower than the 9.21% 

achieved by investing in 1 year to 15 years. This result is equivalent to saying that the middle segment 

of the yield curve had the highest return among the three, delivering 9.46% per year over this period. 

In summary, the empirical results support the developed framework, highlighting how information 

in yield curves can be used to systematically increase a strategy’s expected return, even in the context 

of having tight duration constraints.

Exhibit 5: Performance of Simulated Constant Duration Portfolios

01/1982–12/2016 Duration Annualized 
Compound Return

Annualized 
Standard Deviation

EW 1Y-15Y 8 Years 9.21% 10.92%

EW 1Y-4Y & 12Y-15Y 8 Years 9.00% 10.78%

EW 5Y-11Y 8 Years 9.46% 11.11%

Data source: Federal Reserve Board, www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.

Performance shown is for the time period 1/1/1982–12/30/2016. Past performance is no guarantee of future results. There is no 
guarantee that any product or strategy offered by Dimensional will achieve the returns shown.

4.	 This time frame represents all available full-year data of the US Treasury one-year to 20-year zero coupon yields 
published by the Federal Reserve Board, www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.

http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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CONCLUSION

Research shows that current yield curves contain reliable information about bonds’ expected returns. 

We present a framework underpinning how this information can be used to pursue higher expected 

returns with duration constraints. By focusing on segments of the yield curve that our research shows 

offer higher expected returns, we believe investors can increase the return potential of their fixed 

income investments even when maintaining a desired duration.
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